

Role of Human Factors Engineering in Medical Products Regulatory Reviews and Research

FDA Small Business

Regulatory Education for Industry (REdI)

Burlingame, CA May 15, 2018

Kimberly Kontson, Ph.D.

Biomedical Engineer Human-Device Interaction Laboratory Division of Biomedical Physics Office of Science and Engineering Laboratories Center for Devices and Radiological Health

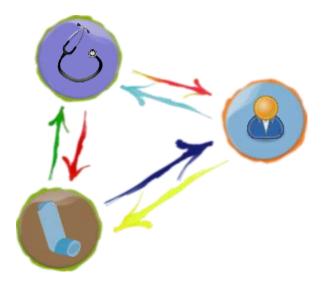
QuynhNhu Nguyen, MS

Commander, U.S. Public Health Service Associate Director for Human Factors Division of Medication Error Prevention and Analysis Office of Medication Error Prevention and Risk Management Center for Drug Evaluation and Research

Outline

- Introduction to Human Factors in medical product development and evaluation
- Human Factors Research at the FDA
- Human Factors and Usability Engineering in CDRH
- Combination Products Development and Human Factors Considerations – CDER Perspective

Increasing Complexity


Humans are exceptionally good at dealing with complexity, HOWEVER,

sometimes the rational action in the moment can have unintended consequences

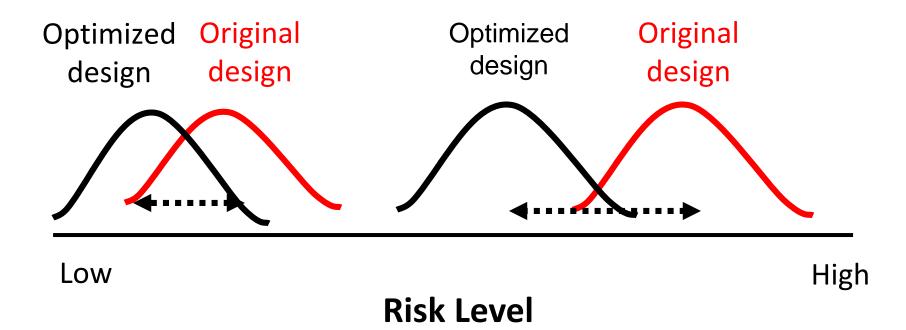
What is Human Factors (HF)?

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being and overall system performance.

International Ergonomics Association (IEA)

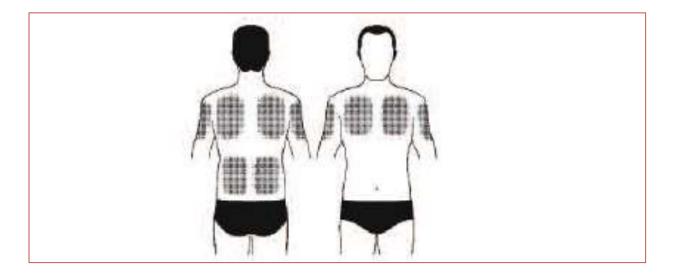
Goals of incorporating HF

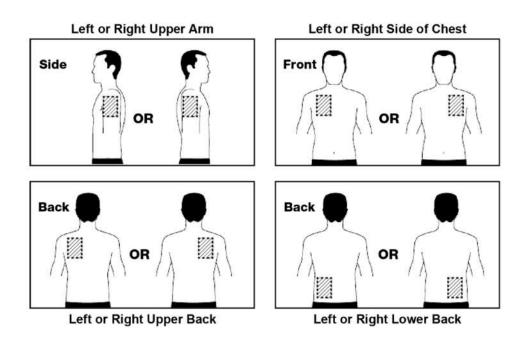
• Provide the best possible user experience


• Combat the medical error problem¹

 Reduce risk of use errors resulting in harm or compromised medical care

¹<u>www.ncbi.nlm.nih.gov/books/NBK225187</u>


Removal of Use Errors through HF


Example: Illustration in the user manual for transdermal patch.

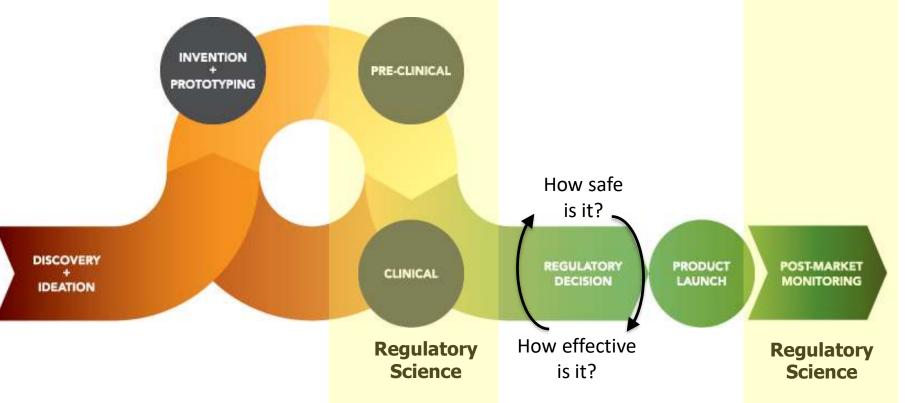
Where would you apply patch?

Revised user instructions: where to apply patch

Auto-injector example

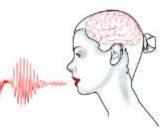
FDA

FDA does research?


CDRH Office of Science and Engineering Laboratories Mission

- Ensure readiness for emerging and innovative medical technologies
- Develop appropriate evaluation strategies and testing standards
- Create accessible and understandable public health information
- Deliver timely and accurate decisions for products across their life cycle

Regulatory Science

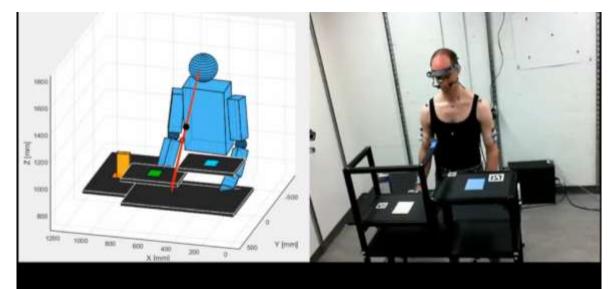

consists of the development of new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all FDA regulated products

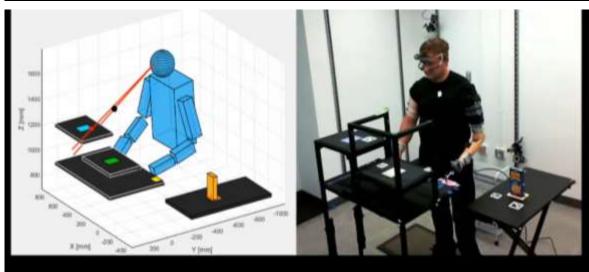
Development of test methods to assess attention and focus during medical product use

Speech analysis

 Which physiological biomarkers are best for the evaluation of focus and attention for a given medical product?

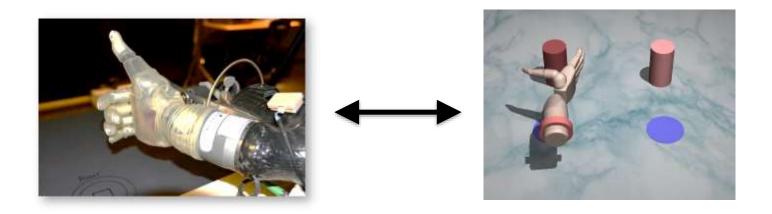
Micro expression


facial analysis


• What aspects of the device UI are confusing?

Eye tracking

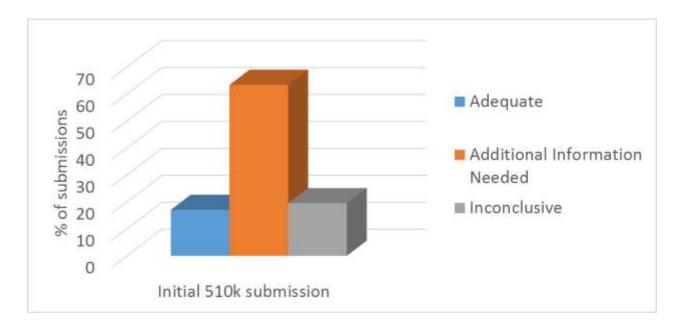
• Where do users focus their attention during product interaction?



Eye metrics

- Percent (%) fixation
- Number of fixations (glance rate)
- Fixation on hand and target

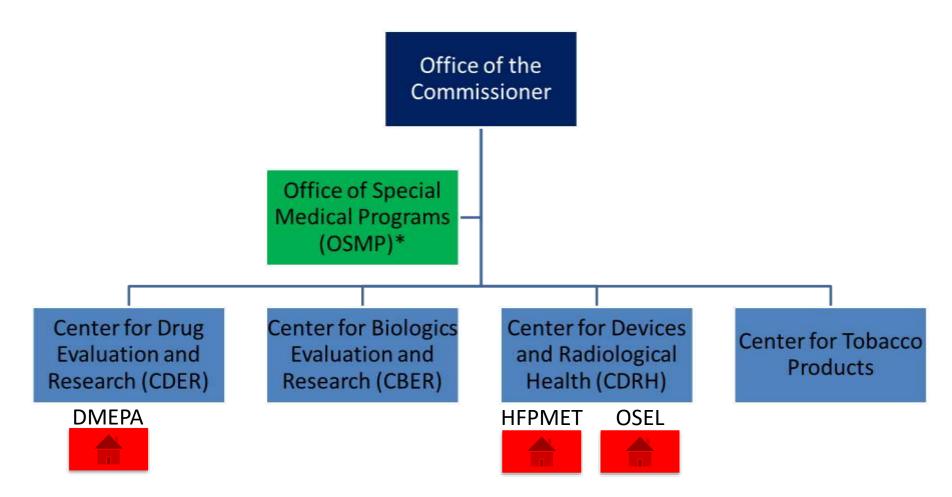
Use of virtual reality environments (VREs) for product evaluation



- Are there differences in how patients interact with objects in VRE vs. real-world?
- Where are those differences and how are they impacting product use?

'Big Data' analytics of HF review material

- How often are submissions with HF data adequate "as-is"?
- What are the common deficiencies found in medical product submissions? How are these deficiencies stratified by product type?



Human Factors and Usability Engineering in Premarket Device Evaluation

FDA Organizational Structure

*Office of Combination Products (OCP) housed under OSMP

Human Factors Team in CDRH

- Scope of work:
 - Premarket submission reviews & combination products (CBER & CDER)
 - Post-market signals: Adverse Events (OSB), Recalls (OC)
 - Guidance development, national and international standards development
 - Panel discussions, outreach & education

Regulatory Basis for Human Factors in Medical Devices

21 CFR 820.30

Design controls

Design input

Address intended use of the device, including needs of user/patient

Design verification

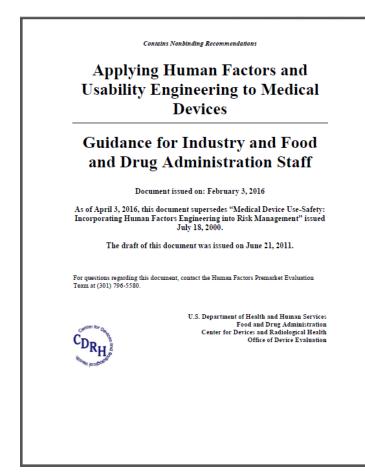
Confirm design output meets design input requirements

Design validation

Ensure device conforms to user needs...and includes testing of production units under actual or simulated use testing

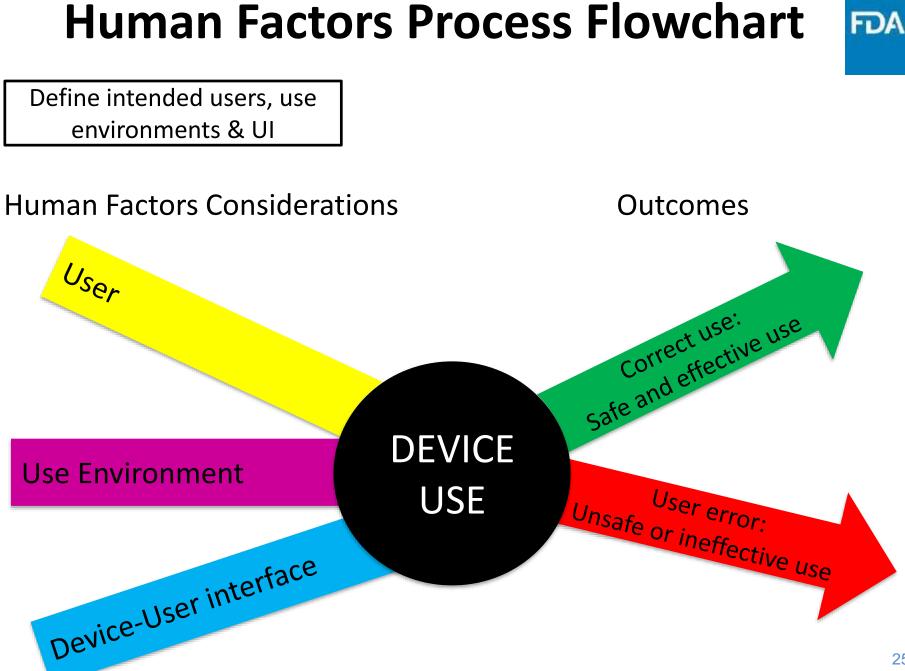
Product development

Regulatory Basis for Human Factors in Medical Devices


Medical Devices; Current Good Manufacturing Practice (cGMP); Quality System Regulation Preamble to Final Rule 21 CFR Parts 808, 812, and 820 (61 FR 52502)

2016 FDA CDRH HF Device Guidance

Aims to clarify expectations around:


- 1. applying HFE to medical device development and
- when to submit a HF report for a premarket submission and
- 3. the content of the HF report

2016 FDA CDRH HF Device Guidance

- "CDRH recommends that manufacturers consider human factors testing for medical devices as a part of a robust <u>design control</u> subsystem".
- "CDRH believes that for those devices where an analysis of risk indicates that users performing tasks incorrectly or failing to perform tasks <u>could result in serious harm</u>, manufacturers should submit human factors data in premarket submissions (i.e., PMA, 510(k), De Novo)."

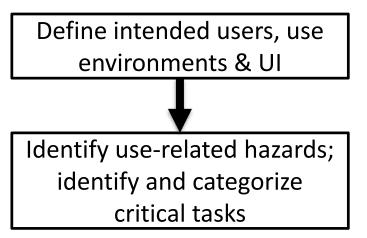
Human Factors Process Flowchart

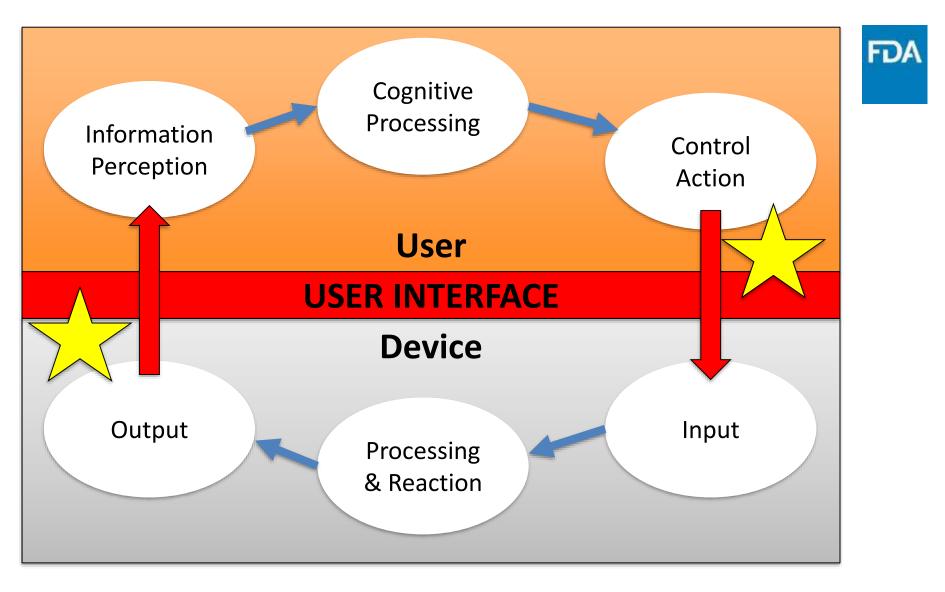
Define intended users, use environments & UI

Who is the intended user?

- Physical considerations
- Sensory abilities
- Knowledge of similar devices
- Level of education related to the medical condition

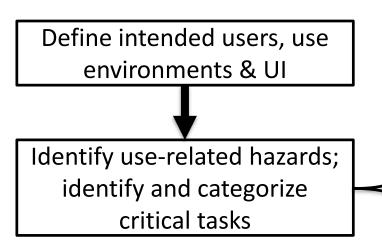
Where will the device be used?





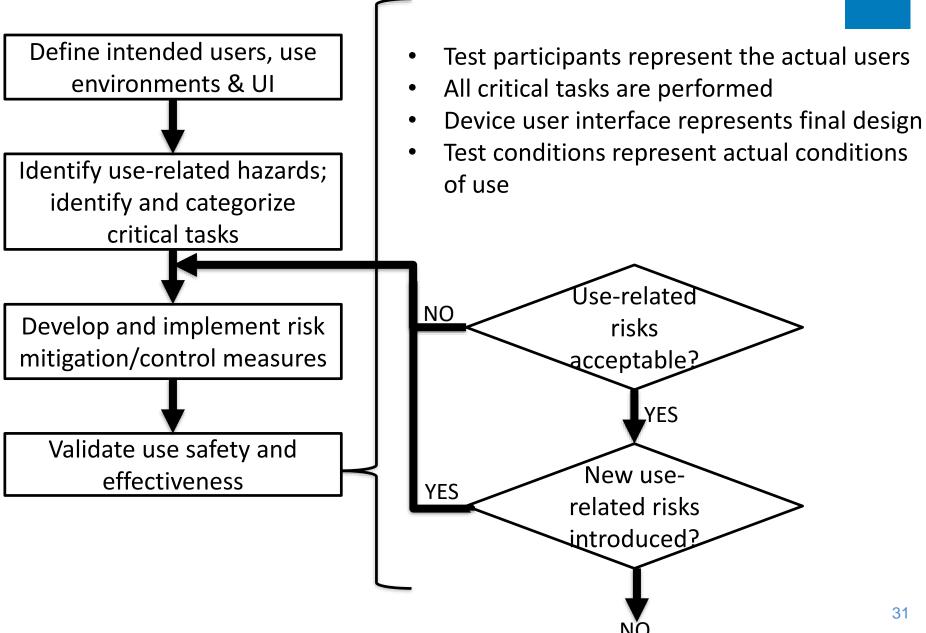
What constitutes the device user-interface?

Human Factors Process Flowchart



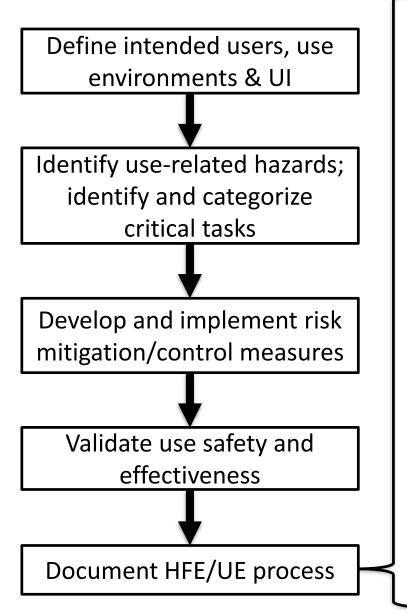
Critical task: A user task which, if performed incorrectly or not performed at all, would or could cause serious harm to the patient or user, where harm is defined to include compromised medical care.

Human Factors Process Flowchart



- Risk analysis approaches
 - Failure Mode Effects Analysis
 - Fault Tree Analysis
- Identify known use-related problems
 - FDA resources
 - ECRI Medical Device Safety Reports
 - Institute of Safe Medical Practice Alerts
- Analytical approaches
 - Task analysis
 - Heuristic analysis
 - Expert review
- Empirical approaches
 - Contextual inquiry
 - Interviews
 - Formative evaluations

Human Factors Process Flowchart Define intended users, use environments & UI **Risk management options:** Identify use-related hazards; Safety by design identify and categorize critical tasks Develop and implement risk Protective measures mitigation/control measures Information for safety



Human Factors Process Flowchart

Human Factors Process Flowchart

Human Factors Recommended **Report Outline**

- 1. Conclusion
- 2. Description of Intended device users, uses, environments and training
- 3. Description of device user interface
- 4. Summary of known use problems
- 5. Analysis of risks associated with use of the device
- 6. Summary of preliminary analyses and evaluations
- 7. Description and categorization of critical tasks
- 8. Details of human factors validation testing

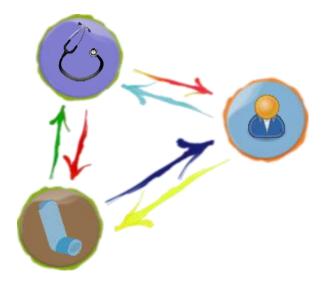
Combination Product Development and Human Factors Considerations

QuynhNhu Nguyen, MS

Associate Director for Human Factors

Division of Medication Error Prevention and Analysis (DMEPA) Office of Medication Error Prevention & Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER)

REdI Plenary, May 2018


34

"I'm Not an Idiot"

What is Human Factors (HF)?

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being and overall system performance.

International Ergonomics Association (IEA)

What is a Medication Error?

A medication error is any preventable event that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the health care professional, patient, or consumer

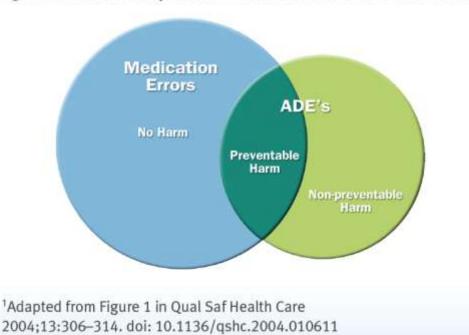
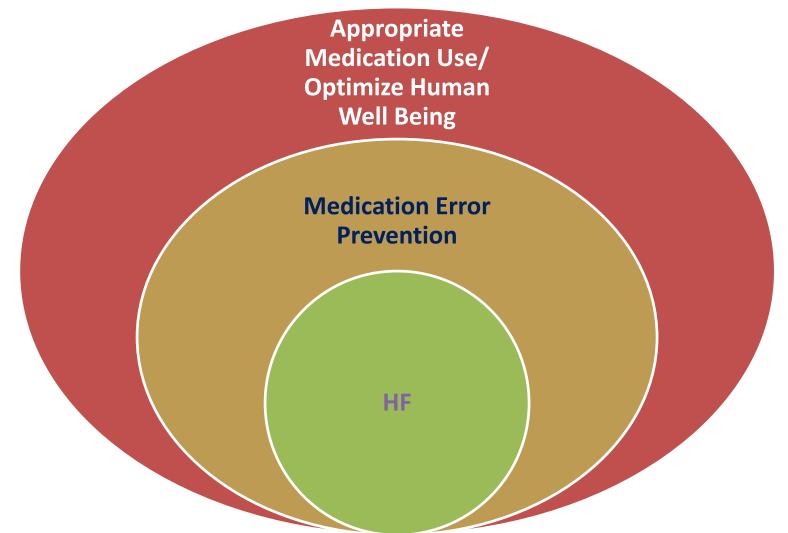
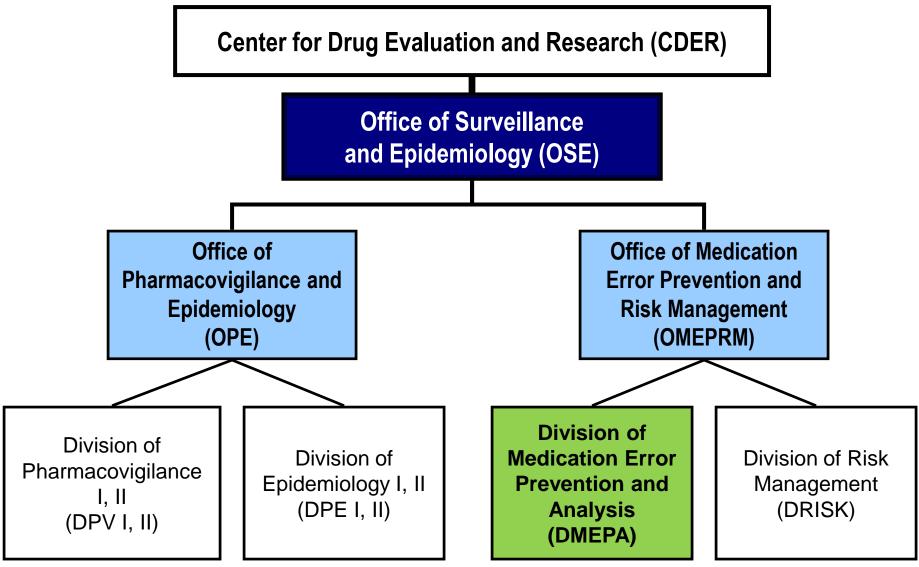



Figure 1: Relationship between medication errors and ADEs

National Coordinating Council for Medication Error Reporting and Prevention. Available at: www.nccmerp.org. Accessed 12/30/2014

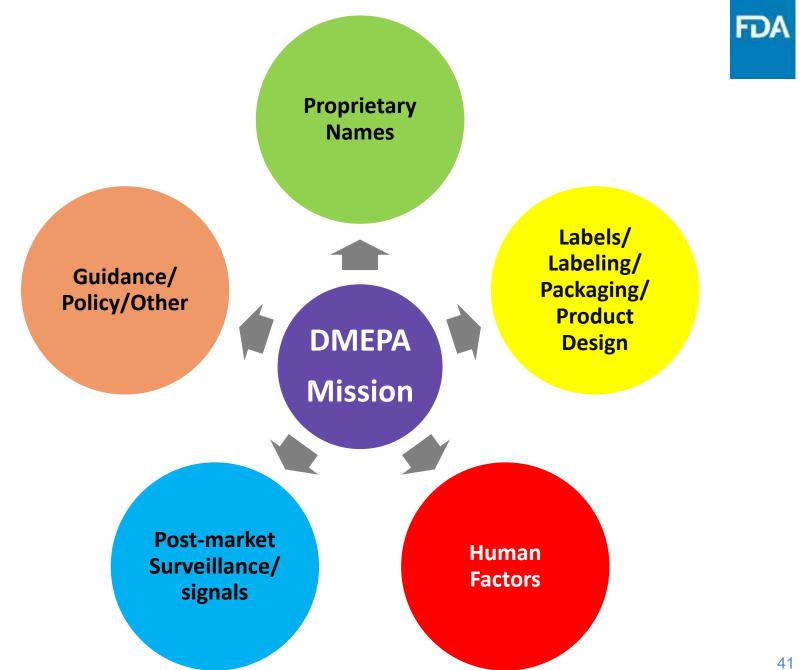
Medication Error Prevention and HF



Who Looks at Medication Errors?

Division of Medication Error Prevention and Analysis (DMEPA)

- Created in 1999
- Scientists and healthcare professionals with varied backgrounds
- 53 employees
- Aligned by therapeutic areas
- Leads CDER review pertaining to medication error prevention and analysis for drug and therapeutic biologics



DMEPA Mission

To increase the **safe use** of drug products by minimizing use error that is related to the *naming, labeling, packaging, or design* of drug products

HF Evaluation of Drug, Biologic, and Combination Products in CDER

DMEPA leads review of human factors submissions (e.g., protocols, study reports, etc.) within CDER

- Evaluate HF submissions for drugs, biologics, and combination products regulated by CDER
- OSE/DMEPA will identify the need for and issue intercenter consults to the CDRH Human Factors Team as needed
- OSE/DMEPA consults Patient Labeling Team in the CDER's Office of Medical Policy for review of Instructions for Use (IFU) for laypersons in the IND phase

What Am I?

Combination Product

Not a Combination Product

Combination Products

- Formal Definition in 21 CFR 3.2:
 - Therapeutic and diagnostic products
 - Combine >1: drugs, devices, biological products
- They can be:
 - Physically or chemically combined (21 CFR 3.2(e)(1))
 - Co-packaged in a kit (21 CFR 3.2(e)(2))
 - Separate, cross-labeled products (21 CFR 3.2(e)(3) or (4))

Where Do I Go?

Primary mode of action is the statutory criterion FDA must use to determine the agency component with primary jurisdiction for the review and regulation of a combination product: 21 CFR 3.2(k) and (m).

21 U.S.C. § 503(g)

Primary Mode of Action (PMOA)

Primary mode of action is the single mode of action of a combination product that provides the most important therapeutic action of the combination product. The most important therapeutic action is the mode of action expected to make the greatest contribution to the overall intended therapeutic effects of the combination product.

21 CFR 3.2(m)

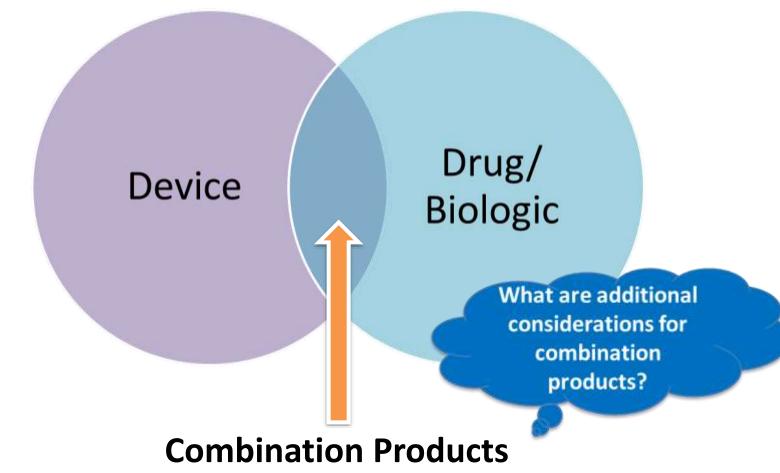
Regulatory Authority

Device : 21 CFR 820.30 Requirement of device	 Drug: Kefauver-Harris Amendment to the 1938 Food, Drug and Cosmetic Act
	demonstrate elimination/minimization zards and medication errors
interface to ensure safe and effective use	 from medication errors through improved product design including packaging, nomenclature, and labeling PDUFA IV development goal: ensure

PDUFA IV development goal: ensure drug safety by prospectively designing a drug that minimizes the risk for errors made by intended end users.

Your User Interface (UI)* is Not Just the Device

User interface: includes all points of interaction between the product and the user(s) including elements such as displays, controls, packaging, product labels, instructions for use, etc.


- E.g.,
- Labeling
- Packaging

 Delivery device constituent part, and any associated controls and displays

We Look at the Entire Product

Case Study #1

- Drug ABC is already approved on the market in a single-dose vial for use by healthcare providers
- Sponsor X wants to introduce a prefilled syringe presentation for drug ABC intended for use by laypersons for at-home use
- What should Sponsor X be thinking about???

Is the product's presentation and its user interface safe and effective for the **intended users**, **uses**, **and use environments**?

Case Study # 1 Some Considerations for Sponsor X

- Dosing:
 - What is the dose for Drug ABC?
 - Is the product single-dose where users administer the entire contents?
 - Would users need more than one syringe to administer intended dose?
- Intended user group(s):
 - Is the indicated population naïve to prefilled syringes?
- Design of prefilled syringe user interface:
 - Is there anything about the user interface that makes this product unique?

Case Study # 1: What if...

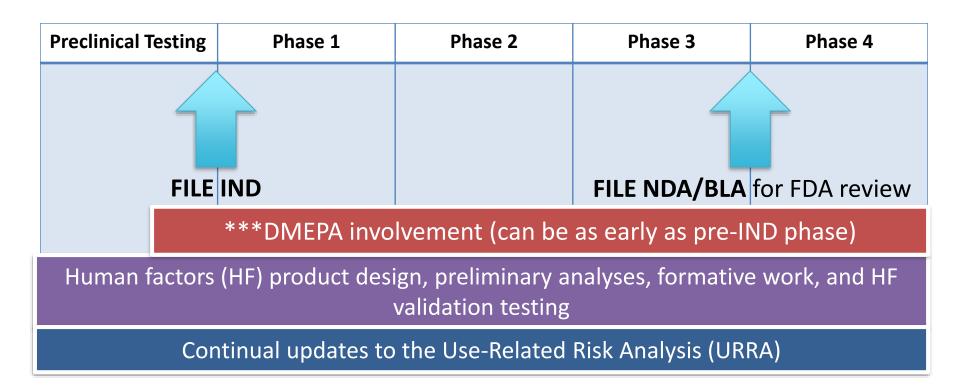
The dosing for Drug ABC was weight-based?

Case Study # 1: What if...

Drug ABC was for emergency use and users needed to assemble the syringe (i.e., attach the needle to the body of the syringe) prior to administration?

Case Study # 1: Some Considerations for Sponsor X

Drug ABC was weight-based?


- Specific instructions to calculate doses?
- Are there graduation marks on prefilled syringe? Are increments appropriate to achieve required doses?
- Does dosing require users to expel drug out of syringe to achieve required dose?
- Is indicated population naïve to prefilled syringes?

Drug ABC was for emergency use and required pre-assembly?

- Design of the product user interface: is product assembly feasible during an emergency situation?
- Is indicated population naïve to prefilled syringes?

Drug Development Process & Human Factors Considerations for Commercial (to-be-marketed) Product

CDER Regulatory Approval Pathways & Human Factors Considerations

	New Drug	Generic	Biosimilar	Interchangeable
Regulatory Pathway(s)	505(b)(1), 505 (b)(2), 351(a)	505(j)	351(k)	351(k)(4)
Application Type(s)	NDAs, and BLAs	ANDAs	BLAs	BLAs
Related Human Factors Guidance for Industry	Draft Guidance for Industry and FDA Staff: Human Factors Studies and Related Clinical Study Considerations in Combination Product Design and Development	Draft Guidance for Industry: Comparative Analyses and Related Comparative Use HF studies for a Drug-Device Combination Product Submitted in an ANDA	Draft Guidance for Industry and FDA Staff: Human Factors Studies and Related Clinical Study Considerations in Combination Product Design and Development	Draft Guidance for Industry: Considerations in Demonstrating Interchangeability with a Reference Product
	Released February 2016	Released January 2017	Released February 2016	Released January 2017

Update to 356h Form

22. Submission Sub-Type	Presubmission Initial Submission	Amendment Resubmission	23. If a supplement, identify the appropriate category.	CBE	Prior Approval (PA)
24. Does this sub	mission contain:				
Only Pediat	ric data? 🗌 Yes 🛛 🗌 N	o Human Factors infor	mation? 🔲 Yes 🛛 🗌 No		
25. Reasons for S	Submission	1			
•					

If the submission contains Human Factors (HF) information, select 'Yes.' HF information may include a study protocol, results report, use-related risk analysis, or justification for no HF validation study.

Update to 1571 Form

Check "other" if you have a use-related risk analysis, HF results report, etc.

11. This submission contains the following (Sel	lect all that apply)		
Initial Investigational New Drug Application	n (IND) Response to Clinic	al fold 🛛 🗌 Response To FDA	Request For Information
Request For Reactivation Or Reinstateme	nt 🗌 Annual Report	General Correspor	ndence
Development Safety Update Report (DSU	R)	-	
Protocol Amendment(s)	Information Amendment(s)	Request for	IND Safety Report(s)
New Protocol Human Factors	Chemistry/Microbiology	Meeting	Initial Written Report
Change in Protocol Protocol	Pharmacology/Toxicology	Proprietary Name Review	Follow-up to a Written
New Investigator	Clinical/Safety Statistics	Special Protocol Assessment	Report
PMR/PMC Protocol	Clinical Pharmacology	Formal Dispute Resolution	

Check here if you have a protocol for a HF validation study

FDA Resources

Year	Title	Description
2000	Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management	 First HF guidance from FDA Focused on applying Human Factors Engineering as an essential component of risk management Introduced use error as a source of risk largely separate from device reliability
2011	Draft Guidance: Applying Human Factors and Usability Engineering to Optimize Medical Device Design	 Provides a structure for the manufacturer's HF reporting Evaluation focused on risk priority of user tasks Continues to treat use error as separate risk from device failure risks

Year	Title	Description
2012	Draft Guidance for Industry: Safety Considerations for Product Design To Minimize Medication Errors	 Provides a set of principles for consideration in the development of drug products, using a systems approach, to minimize medication errors relating to product design and container closure design Underscores importance of evaluating the product design using proactive risk assessments before finalizing the design Recommendations based on postmarket safety information Discusses concepts of simulated use testing

Year	Title	Description
2013	Draft Guidance for Industry: Safety Considerations for Container Labels and Carton Labeling Design to Minimize Medication Errors	 Focused on safety aspects of the container label and carton labeling design Provides a set of principles to promote safe dispensing, administration, and use of products Reinforces importance of evaluating design using proactive risk assessments before finalizing the design Recommendations based on postmarket safety information

Year	Title	Description
2016	Draft Guidance for Industry and FDA Staff: Human Factors Studies and Related Clinical Study Considerations in Combination Product Design and Development	 First HF guidance from FDA focused on combination product development Provides recommendations regarding HF data needs in investigational and marketing applications Describes how HF studies relate to other clinical studies
2016	Applying Human Factors and Usability Engineering to Medical Devices	 Finalized the June 2011 draft guidance Supersedes "Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management" issued in 2000
2016	Safety Considerations for Product Design To Minimize Medication Errors	 Finalized the December 2012 draft guidance

Year	Title	Description
2017	Draft Guidance for Industry: Considerations in Demonstrating Interchangeability with a Reference Product	 First guidance developed by FDA to include the concept of comparative analyses (threshold analyses) and comparative use HF studies Considerations for the design and analysis of a switching study or studies to support a demonstration of interchangeability; considerations for development of presentations
2017	Draft Guidance for Industry: Comparative Analyses and Related Comparative Use HF studies for a Drug-Device Combination Product Submitted in an ANDA	 Leveraged the framework developed for the Draft Guidance for Industry: Considerations in Demonstrating Interchangeability with a Reference Product Focused on analysis of the proposed user interface, but not intended to address all information necessary to support approval of a generic combination product Provide clarity on FDA's expectations for the user interface of a generic drug-device combination product when compared to its RLD

Additional Information

- Guidance for Industry and FDA Staff Applying Human Factors and Usability Engineering to Optimize Medical Device Design: <u>www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocume</u> <u>nts/ucm259748.htm</u>
- Draft Guidance for Industry Safety Considerations for Product Design to Minimize Medication Errors: <u>www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Gu</u> <u>idances/UCM331810.pdf</u>
- Draft Guidance for Industry Safety Considerations for Container Labels and Carton Labeling Design to Minimize Medication Errors: <u>www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm349009.pdf</u>
- Guidance for Industry Label Comprehension Studies for Nonprescription Drug Products:

www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guid ances/ucm143834.pdf

Additional Information

- Draft Guidance for Industry Human Factors Studies and Related Clinical Study Considerations in Combination Product Design and Development: <u>www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM484345.pdf</u>
- Guidance for Industry Formal Meetings Between FDA and Sponsors or Applicants: <u>www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/g</u>

<u>www.fda.gov/downloads/drugs/guidancecomplianceregulatoryInformation/g</u> <u>uidances/ucm153222.pdf</u>

 Guidance for Industry and FDA Staff – Requests for Feedback on Medical Device Submissions: The Pre-Submission Program and Meetings with Food and Drug Administration Staff: www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guid

ancedocuments/ucm311176.pdf

Questions

Contact CDRH Human Factors team at <u>HFPMET@fda.hhs.gov</u> <u>Kimberly.Kontson@fda.hhs.gov</u>

Contact CDER DMEPA team: QuynhT.Nguyen@fda.hhs.gov

Please evaluate this session:

surveymonkey.com/r/REdI2018-Plenary

Your Call To Action

- HF research can be used to inform review of medical product applications.
- HF is not just a check box at the end of development, incorporate HF principles throughout product development.
- Use available resources to meet with FDA and to engage with FDA as early as possible.

